116 research outputs found

    Atrial fibrillation after pulmonary lobectomy for lung cancer affects long-term survival in a prospective single-center study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atrial fibrillation (AF) after thoracic surgery is a continuing source of morbidity and mortality. The effect of postoperative AF on long-term survival however has not been studied. Our aim was to evaluate the impact of AF on early outcome and on survival > 5 years after pulmonary lobectomy for lung cancer.</p> <p>Methods</p> <p>From 1996 to June 2009, 454 consecutive patients undergoing lobectomy for lung cancer were enrolled and followed-up until death or study end (October 2010). Patients with postoperative AF were identified; AF was investigated with reference to its predictors and to short- and long-term survival (> 5 years).</p> <p>Results</p> <p>Hospital mortality accounted for 7 patients (1.5%), while postoperative AF occurred in 45 (9.9%). Independent AF predictors were: preoperative paroxysmal AF (odds ratio [OR] 5.91; 95%CI 2.07 to 16.88), postoperative blood transfusion (OR 3.61; 95%CI 1.67 to 7.82) and postoperative fibro-bronchoscopy (OR 3.39; 95%CI 1.48 to 7.79). Patients with AF experienced higher hospital mortality (6.7% vs. 1.0%, p = 0.024), longer hospitalization (15.3 ± 10.1 vs. 12.2 ± 5.2 days, p = 0.001) and higher intensive care unit admission rate (13.3% vs. 3.9%, p = 0.015). The median follow-up was 36 months (maximum: 179 months). Among the 445 discharged subjects with complete follow-up, postoperative AF was not an independent predictor of mortality; however, among the 151 5-year survivors, postoperative AF independently predicted poorer long-term survival (HR 3.75; 95%CI 1.44 to 9.08).</p> <p>Conclusion</p> <p>AF after pulmonary lobectomy for lung cancer, in addition to causing higher hospital morbidity and mortality, predicts poorer long-term outcome in 5-year survivors.</p

    Predicting survival after pulmonary metastasectomy for colorectal cancer: previous liver metastases matter

    Get PDF
    BACKGROUND: Few patients with lung metastases from colorectal cancer (CRC) are candidates for surgical therapy with a curative intent, and it is currently impossible to identify those who may benefit the most from thoracotomy. The aim of this study was to determine the impact of various parameters on survival after pulmonary metastasectomy for CRC. METHODS: We performed a retrospective analysis of 40 consecutive patients (median age 63.5 [range 33-82] years) who underwent resection of pulmonary metastases from CRC in our institution from 1996 to 2009. RESULTS: Median follow-up was 33 (range 4-139) months. Twenty-four (60%) patients did not have previous liver metastases before undergoing lung surgery. Median disease-free interval between primary colorectal tumor and development of lung metastases was 32.5 months. 3- and 5-year overall survival after thoracotomy was 70.1% and 43.4%, respectively. In multivariate analysis, the following parameters were correlated with tumor recurrence after thoracotomy; a history of previous liver metastases (HR = 3.8, 95%CI 1.4-9.8); and lung surgery other than wedge resection (HR = 3.0, 95%CI 1.1-7.8). Prior resection of liver metastases was also correlated with an increased risk of death (HR = 5.1, 95% CI 1.1-24.8, p = 0.04). Median survival after thoracotomy was 87 (range 34-139) months in the group of patients without liver metastases versus 40 (range 28-51) months in patients who had undergone prior hepatectomy (p = 0.09). CONCLUSION: The main parameter associated with poor outcome after lung resection of CRC metastases is a history of liver metastases

    Automated mass spectrometric analysis of urinary and plasma serotonin

    Get PDF
    Serotonin emerges as crucial neurotransmitter and hormone in a growing number of different physiologic processes. Besides extensive serotonin production previously noted in patients with metastatic carcinoid tumors, serotonin now is implicated in liver cell regeneration and bone formation. The aim was to develop a rapid, sensitive, and highly selective automated on-line solid-phase extraction method coupled to high-performance liquid chromatography–tandem mass spectrometry (XLC-MS/MS) to quantify low serotonin concentrations in matrices such as platelet-poor plasma and urine. Fifty microliters plasma or 2.5 μL urine equivalent were pre-purified by automated on-line solid-phase extraction, using weak cation exchange. Chromatography of serotonin and its deuterated internal standard was performed with hydrophilic interaction chromatography. Mass spectrometric detection was operated in multiple reaction monitoring mode using a quadrupole tandem mass spectrometer with positive electrospray ionization. Serotonin concentrations were determined in platelet-poor plasma of metastatic carcinoid patients (n = 23) and healthy controls (n = 22). Urinary reference intervals were set by analyzing 24-h urine collections of 120 healthy subjects. Total run-time was 6 min. Intra- and inter-assay analytical variation were <10%. Linearity in the 0–7300 μmol/L calibration range was excellent (R2 > 0.99). Quantification limits were 30 and 0.9 nmol/L in urine and plasma, respectively. Platelet-poor serotonin concentrations in metastatic carcinoid patients were significantly higher than in controls. The urinary reference interval was 10–78 μmol/mol creatinine. Serotonin analysis with sensitive and specific XLC-MS/MS overcomes limitations of conventional HPLC. This enables accurate quantification of serotonin for both routine diagnostic procedures and research in serotonin-related disorders

    The Stem Cell Discovery Engine: an integrated repository and analysis system for cancer stem cell comparisons

    Get PDF
    Mounting evidence suggests that malignant tumors are initiated and maintained by a subpopulation of cancerous cells with biological properties similar to those of normal stem cells. However, descriptions of stem-like gene and pathway signatures in cancers are inconsistent across experimental systems. Driven by a need to improve our understanding of molecular processes that are common and unique across cancer stem cells (CSCs), we have developed the Stem Cell Discovery Engine (SCDE)—an online database of curated CSC experiments coupled to the Galaxy analytical framework. The SCDE allows users to consistently describe, share and compare CSC data at the gene and pathway level. Our initial focus has been on carefully curating tissue and cancer stem cell-related experiments from blood, intestine and brain to create a high quality resource containing 53 public studies and 1098 assays. The experimental information is captured and stored in the multi-omics Investigation/Study/Assay (ISA-Tab) format and can be queried in the data repository. A linked Galaxy framework provides a comprehensive, flexible environment populated with novel tools for gene list comparisons against molecular signatures in GeneSigDB and MSigDB, curated experiments in the SCDE and pathways in WikiPathways. The SCDE is available at http://discovery.hsci.harvard.edu

    Evidence That SOX2 Overexpression Is Oncogenic in the Lung

    Get PDF
    BACKGROUND: SOX2 (Sry-box 2) is required to maintain a variety of stem cells, is overexpressed in some solid tumors, and is expressed in epithelial cells of the lung. METHODOLOGY/PRINCIPAL FINDINGS: We show that SOX2 is overexpressed in human squamous cell lung tumors and some adenocarcinomas. We have generated mouse models in which Sox2 is upregulated in epithelial cells of the lung during development and in the adult. In both cases, overexpression leads to extensive hyperplasia. In the terminal bronchioles, a trachea-like pseudostratified epithelium develops with p63-positive cells underlying columnar cells. Over 12-34 weeks, about half of the mice expressing the highest levels of Sox2 develop carcinoma. These tumors resemble adenocarcinoma but express the squamous marker, Trp63 (p63). CONCLUSIONS: These findings demonstrate that Sox2 overexpression both induces a proximal phenotype in the distal airways/alveoli and leads to cancer

    Long-Term Outcomes in Percutaneous Radiofrequency Ablation for Histologically Proven Colorectal Lung Metastasis

    Get PDF
    Introduction To evaluate the long-term outcome of image-guided radiofrequency ablation (RFA) when treating histologically confirmed colorectal lung metastasis in terms of overall survival (OS), progression-free survival (PFS) and local tumour control (LTC). Materials and Methods Retrospective single-centre study. Consecutive RFA treatments of histologically proven lung colorectal metastases between 01/01/2008 and 31/12/14. The primary outcome was patient survival (OS and PFS). Secondary outcomes were local tumour progression (LTP) and complications. Prognostic factors associated with OS/ PFS were determined by univariate and multivariate analyses. Results Sixty patients (39 males: 21 females; median age 69 years) and 125 colorectal lung metastases were treated. Eighty percent (n = 48) also underwent lung surgery for lung metastases. Mean metastasis size (cm) was 1.4 ± 0.6 (range 0.3–4.0). Median number of RFA sessions was 1 (1–4). During follow-up (median 45.5 months), 45 patients died (75%). The estimated OS and PFS survival rates at 1, 3, 5, 7, 9 years were 96.7%, 74.7%, 44.1%, 27.5%, 16.3% (median OS, 52 months) and 66.7%, 31.2%, 25.9%, 21.2% and 5.9% (median PFS, 19 months). The LTC rate was 90% with 6 patients developing LTP with 1-, 2-, 3- and 4-year LTP rates of 3.3%, 8.3%, 10.0% and 10.0%. Progression-free interval < 1 year (P = 0.002, HR = 0.375) and total number of pulmonary metastases (≥ 3) treated (P = 0.037, HR = 0.480) were independent negative prognostic factors. Thirty-day mortality rate was 0% with no intra-procedural deaths. Conclusion The long-term OS and PFS following RFA for the treatment of histologically confirmed colorectal lung metastases demonstrate comparable oncological durability to surgery

    Numerical and functional defects of blood dendritic cells in early- and late-stage breast cancer

    Get PDF
    The generation of antitumour immunity depends on the nature of dendritic cell (DC)–tumour interactions. These have been studied mostly by using in vitro-derived DC which may not reflect the natural biology of DC in vivo. In breast cancer, only one report has compared blood DC at different stages and no longitudinal evaluation has been performed. Here we conducted three cross-sectional and one one-year longitudinal assessments of blood DC in patients with early (stage I/II, n=137) and advanced (stage IV, n=36) disease compared to healthy controls (n=66). Patients with advanced disease exhibit markedly reduced blood DC counts at diagnosis. Patients with early disease show minimally reduced counts at diagnosis but a prolonged period (1 year) of marked DC suppression after tumour resection. While differing in frequency, DC from both patients with early and advanced disease exhibit reduced expression of CD86 and HLA-DR and decreased immunostimulatory capacities. Finally, by comparing a range of clinically available maturation stimuli, we demonstrate that conditioning with soluble CD40L induces the highest level of maturation and improved T-cell priming. We conclude that although circulating DC are compromised by loco-regional and systemic breast cancer, they respond vigorously to ex vivo conditioning, thus enhancing their immunostimulatory capacity and potential for immunotherapy

    Tumor Endothelial Cells with Distinct Patterns of TGF -Driven Endothelial-to-Mesenchymal Transition

    Get PDF
    Endothelial-to-mesenchymal transition (EndMT) occurs during development and underlies the pathophysiology of multiple diseases. In tumors, unscheduled EndMT generates cancer-associated myofibroblasts that fuel inflammation and fibrosis, and may contribute to vascular dysfunction that promotes tumor progression. We report that freshly isolated subpopulations of tumor-specific endothelial cells (TEC) from a spontaneous mammary tumor model undergo distinct forms of EndMT in response to TGFβ stimulation. Whereas some TEC strikingly up-regulate alpha smooth muscle actin (SMA), a principal marker of EndMT and activated myofibroblasts, counterpart normal mammary gland endothelial cells (NEC) showed little change in SMA expression after TGFβ treatment. Compared with NEC, SMA+ TEC were 40 % less motile in wound healing assays and formed more stable vascular-like networks in vitro when challenged with TGFβ. Lineage tracing using ZsGreenCdh5-Cre reporter mice confirmed that only a fraction of vessels in breast tumors contain SMA+ TEC, suggesting that not all endothelial cells (EC) respond identically to TGFβ in vivo. Indeed, examination of 84 TGFβ-regulated target genes revealed entirely different genetic signatures in TGFβ-stimulated NEC and TEC cultures. Finally, we found that basic FGF (bFGF) exerts potent inhibitory effects on many TGFβ-regulated genes but operates in tandem with TGFβ to up-regulate others. EC challenged with TGFβ secrete bFGF which blocks SMA expression in secondary cultures suggesting a cell-autonomous or lateral-inhibitory mechanism for impeding mesenchymal differentiation. Together, our results suggest that TGFβ-driven EndMT produces a spectrum of EC phenotypes with different functions that could underlie the plasticity and heterogeneity of the tumor vasculature

    International expert consensus on the management of bleeding during VATS lung surgery

    Get PDF
    Intraoperative bleeding is the most crucial safety concern of video-assisted thoracic surgery (VATS) for a major pulmonary resection. Despite the advances in surgical techniques and devices, intraoperative bleeding is still not rare and remains the most common and potentially fatal cause of conversion from VATS to open thoracotomy. Therefore, to guide the clinical practice of VATS lung surgery, we proposed the International Interest Group on Bleeding during VATS Lung Surgery with 65 experts from 10 countries in the field to develop this consensus document. The consensus was developed based on the literature reports and expert experience from different countries. The causes and incidence of intraoperative bleeding were summarised first. Seven situations of intraoperative bleeding were collected based on clinical practice, including the bleeding from massive vessel injuries, bronchial arteries, vessel stumps, and bronchial stumps, lung parenchyma, lymph nodes, incisions, and the chest wall. The technical consensus for the management of intraoperative bleeding was achieved on these seven surgical situations by six rounds of repeated revision. Following expert consensus statements were achieved: (I) Bleeding from major vascular injuries: direct compression with suction, retracted lung, or rolled gauze is useful for bleeding control. The size and location of the vascular laceration are evaluated to decide whether the bleeding can be stopped by direct compression or by ligation. If suturing is needed, the suction-compressing angiorrhaphy technique (SCAT) is recommended. Timely conversion to thoracotomy with direct compression is required if the operator lacks experience in thoracoscopic angiorrhaphy. (II) Bronchial artery bleeding: pre-emptive clipping of bronchial artery before bronchial dissection or lymph node dissection can reduce the incidence of bleeding. Bronchial artery bleeding can be stopped by compression with the suction tip, followed by the handling of the vascular stump with energy devices or clips. (III) Bleeding from large vessel stumps and bronchial stumps: bronchial stump bleeding mostly comes from accompanying bronchial artery, which can be clipped for hemostasis. Compression for hemostasis is usually effective for bleeding at the vascular stump. Otherwise, additional use of hemostatic materials, re-staple or a suture may be necessary. (IV) Bleeding from the lung parenchyma: coagulation hemostasis is the first choice. For wounds with visible air leakage or an insufficient hemostatic effect of coagulation, suturing may be necessary. (V) Bleeding during lymph node dissection: non-grasping en-bloc lymph node dissection is recommended for the nourishing vessels of the lymph node are addressed first with this technique. If bleeding occurs at the site of lymph node dissection, energy devices can be used for hemostasis, sometimes in combination with hemostatic materials. (VI) Bleeding from chest wall incisions: the chest wall incision(s) should always be made along the upper edge of the rib(s), with good hemostasis layer by layer. Recheck the incision for hemostasis before closing the chest is recommended. (VII) Internal chest wall bleeding: it can usually be managed with electrocoagulation. For diffuse capillary bleeding with the undefined bleeding site, compression of the wound with gauze may be helpful
    corecore